牛顿大学的牛顿用英语怎么说
⑴ 牛顿用英文怎么说
Newton
⑵ 英国牛顿用英文怎么说
newton
英:[ˈnju:tən]
美:[ˈnu:tən]
n.牛顿(力的单位);
例句:
Newton was an intellectual giant.
牛顿是一个智力巨人。
⑶ 牛顿的英文名怎么写
Newton
⑷ 有关牛顿的英语介绍 要英汉双译的 主要内容要有关的他的研究成果 谢谢
Isaac
Newton,a
physical
scientist
,mathematician
and
astronomer
of
Britain.艾萨克·牛顿,英国物理学家兼数学家和天文学家。He
was
graated
from
Oxford
University
and
had
been
chairman
of
the
Royal
Society
of
Britain.毕业于牛津大学,是英国皇家学会会长。He
was
one
of
the
initiators
of
calculous.微积分的创始人之一。The
calcuious
founded
by
Newton
is
a
landmark
in
history
of
maths.他创立的微积分是数学史上的里程碑。In
mechanics
,he
founded
the
three
laws
of
movements
which
have
been
the
bases
of
the
classical
mechanics
.在力学上,他创立了作为经典力学基础的运动三定律。He
discovered
the
law
of
universal
gravitation,so
he
is
called
Father
of
Classical
Mechanics.发现了万有引力定律,被后人称为经典力学之父。In
optics,he
discovered
that
the
white
light
is
composed
of
different
tinctorial
light.在光学上,他发现了白光是由不同颜色的光复合而成的。His
discovering
formed
the
bases
of
spectral
analysis.成为光谱分析的基础。In
astronomy,he
created
the
reflecting
telescope,and
observed
the
laws
of
the
planet,and
thought
that
the
earth
isn't
regular
sphere
.在天文学方面,创制了反射式望远镜,观察行星运行规律,提出地球不是正球形。He
wrote
some
works,such
as
the
Mathematics
Principle
of
Natural
Philosophy,the
Optics,and
so
on.著有《自然哲学的数学原理》、《光学》等。
⑸ 牛顿的英文名是什么
牛顿(IsaacNewton,1642-1727),伟大的英国物理学家、天文学家、数学家。1642年12月25日(新历1643年1月4日)生于林肯郡,幼年时就喜欢制作机械玩具。1661年进剑桥大学三一学院学数学,1665年获文学士学位。
1667年,他进三一学院当研究生,次年获硕士学位。1669年,顿受到数学教授巴罗博士的推荐,继承他的教授职位。1689年和1701年,牛顿两次以剑桥大学代表的身份被选入议会。
1696年,他被聘为造币厂的监督。1703年起担任英国皇家学会会长。1727年3月20日(新历3月31日)逝世于伦敦。
牛顿在科学上的贡献是非常巨大的。从天文学来说,他的主要成就有两方面,即天文光学的研究和万有引力定律的发现。1666年,牛顿重复了用三棱镜分解日光为七色光带的实验。他正确地解释说,这是各色光线通过玻璃时折射率不同造成的。但是,他认为各种玻璃的折射本领都是一样的,因此折射望远镜不易制造。
为了解决这难题,牛顿便以铜锡合金磨成一面凹面镜来反聚光成像,1672年牛顿制成了一种新的反射望远镜,一般称为牛顿望远镜。他亲手制造的望远镜现仍保存在英国皇家学会作为珍贵的展品。
1666年,牛顿在家乡躲避瘟疫的时候,曾思考过引力问题。牛顿曾因见到树上的苹果落地而引起深思,引力的概念进入他的脑海。他的结论是,物体都互相吸引,地球上所有物质对苹果的吸引力的合力是向着地心的,因此苹果才向着地心落下。
进一步,牛顿又把物体相互吸引的问题推广到宇宙间。他又想到月球离地球虽然远到地球半径的60倍,但地球的引力也一定会达到月球。那么,月球何以不坠落呢?这一定和月球绕地球的运动有关。若月球暂停止运动,无疑它会落向地球引起灾难性的碰撞,应该是月球的绕地运动使这灾难得以避免。
天体互相吸引的概念,在牛顿以前就有人想到过,例如,英国物理学家R.胡克等人。他们甚至猜测过,引力是和距离平方成反比的。牛顿的贡献是,令人无可怀疑地证明了地球和其他天体的引力确实是按照这个规律变化的。不过,完成这个证明却需要很长的时间。一个原因是当时所掌握的地球半径数据误差较大,从而使牛顿最初算出的月球绕地球运动的向心加速度和地面上重力加速度之比不符合与距离平方成反比的规律。
直到1671年法国天文学家皮卡德测算得较精确的地球半径数据后,才有可能通过计算,证明使苹果落到地面的力量,也就是使月球沿轨道绕地球运行的力量。
既已理解月球绕地球运行的问题,牛顿不难推想到地球绕太阳的运动也是受控于太阳引力的。其他行星与太阳的距离虽不同于地球,它们绕太阳的运动也必定是受它的引力支配。
开普勒在牛顿之前曾经从观测的结果得出行星运动的三定律,但行星为什么要按这些规律运动,却未能作出解答。牛顿从数学上解答了这个问题。牛顿首先证明若要行星与太阳的联线在相等时间内扫过相等的面积,只需引力的方向是沿着行星与太阳的联线即可,不问引力大小与距离有什么关系。
假如行星的轨道为一椭圆,而太阳处于椭圆的一焦点上,那么牛顿的数学推理能够证明引力的强弱必须同太阳和行星距离的平方成反比。在绕日运行各行星的物质同样受到太阳引力影响的假设下,数学方法也足以证明开普勒的第三定律,即任何两颗行星周期的平方同它们轨道长轴的立方成正比。
通过进一步的研究,牛顿发现了天体力学中的许多奥秘。他认识到不但大天体象太阳、地球、月球按平方反比律互相吸引,而且宇宙间的每个质点和其他质点间也是以平方反比律互相吸引的。
从这一假设出发,牛顿证明了任何均匀的球体,它对外的引力可以用同质量的质点放在它中心的位置来替代。牛顿还用万有引力原理说明了潮汐的各种现象,指出潮汐的大小不但同朔望有关系,而且同太阳的引力也有关系。
牛顿还从理论上推测,地球的两极较扁,而岁差就是由于太阳对赤道突出部分的摄动而造成的。 牛顿的许多发现都收在他的不朽杰作《自然哲学的数学原理》一书中。该书于1687年问世。从此,一个崭新的天文学分支--天体力学便而诞生了。
⑹ 谁有牛顿的英语介绍
Isaac Newton was one of the leading figures of the scientific revolution is the seventeenth century. He devoted his life to the study of the natural world, discovering the laws of gravity and motion, analyzing light, and developing the mathematics of calculus. He was born prematurely on December 25, 1642, in Woolsthorpe, England, to a poor farming family. Newton was taken out of school to work on the family farm at the age of 16 after his stepfather's death.
够了吗?不够就在这个网页找
http://www.pbs.org/wgbh/nova/newton/media/lrk-whowasnewton.pdf
参考资料:http://www.pbs.org/wgbh/nova/newton/media/lrk-whowasnewton.pdf
English physicist and mathematician who was born into a poor farming family. Luckily for humanity, Newton was not a good farmer, and was sent to Cambridge to study to become a preacher. At Cambridge, Newton studied mathematics, being especially strongly influenced by Euclid, although he was also influenced by Baconian and Cartesian philosophies. Newton was forced to leave Cambridge when it was closed because of the plague, and it was ring this period that he made some of his most significant discoveries. With the reticence he was to show later in life, Newton did not, however, publish his results.
Newton suffered a mental breakdown in 1675 and was still recovering through 1679. In response to a letter from Hooke, he suggested that a particle, if released, would spiral in to the center of the Earth. Hooke wrote back, claiming that the path would not be a spiral, but an ellipse. Newton, who hated being bested, then proceeded to work out the mathematics of orbits. Again, he did not publish his calculations. Newton then began devoting his efforts to theological speculation and put the calculations on elliptical motion aside, telling Halley he had lost them (Westfall 1993, p. 403). Halley, who had become interested in orbits, finally convinced Newton to expand and publish his calculations. Newton devoted the period from August 1684 to spring 1686 to this task, and the result became one of the most important and influential works on physics of all times, Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) (1687), often shortened to Principia Mathematica or simply "the Principia."
In Book I of Principia, Newton opened with definitions and the three laws of motion now known as Newton's laws (laws of inertia, action and reaction, and acceleration proportional to force). Book II presented Newton's new scientific philosophy which came to replace Cartesianism. Finally, Book III consisted of applications of his dynamics, including an explanation for tides and a theory of lunar motion. To test his hypothesis of universal gravitation, Newton wrote Flamsteed to ask if Saturn had been observed to slow down upon passing Jupiter. The surprised Flamsteed replied that an effect had indeed been observed, and it was closely predicted by the calculations Newton had provided. Newton's equations were further confirmed by observing the shape of the Earth to be oblate spheroidal, as Newton claimed it should be, rather than prolate spheroidal, as claimed by the Cartesians. Newton's equations also described the motion of Moon by successive approximations, and correctly predicted the return of Halley's Comet. Newton also correctly formulated and solved the first ever problem in the calculus of variations which involved finding the surface of revolution which would give minimum resistance to flow (assuming a specific drag law).
Newton invented a scientific method which was truly universal in its scope. Newton presented his methodology as a set of four rules for scientific reasoning. These rules were stated in the Principia and proposed that (1) we are to admit no more causes of natural things such as are both true and sufficient to explain their appearances, (2) the same natural effects must be assigned to the same causes, (3) qualities of bodies are to be esteemed as universal, and (4) propositions deced from observation of phenomena should be viewed as accurate until other phenomena contradict them.
These four concise and universal rules for investigation were truly revolutionary. By their application, Newton formulated the universal laws of nature with which he was able to unravel virtually all the unsolved problems of his day. Newton went much further than outlining his rules for reasoning, however, actually describing how they might be applied to the solution of a given problem. The analytic method he invented far exceeded the more philosophical and less scientifically rigorous approaches of Aristotle and Aquinas. Newton refined Galileo's experimental method, creating the compositional method of experimentation still practiced today. In fact, the following description of the experimental method from Newton's Optics could easily be mistaken for a modern statement of current methods of investigation, if not for Newton's use of the words "natural philosophy" in place of the modern term "the physical sciences." Newton wrote, "As in mathematics, so in natural philosophy the investigation of difficult things by the method of analysis ought ever to precede the method of composition. This analysis consists of making experiments and observations, and in drawing general conclusions from them by inction...by this way of analysis we may proceed from compounds to ingredients, and from motions to the forces procing them; and in general from effects to their causes, and from particular causes to more general ones till the argument end in the most general. This is the method of analysis: and the synthesis consists in assuming the causes discovered and established as principles, and by them explaining the phenomena preceding from them, and proving the explanations."
Newton formulated the classical theories of mechanics and optics and invented calculus years before Leibniz. However, he did not publish his work on calculus until afterward Leibniz had published his. This led to a bitter priority dispute between English and continental mathematicians which persisted for decades, to the detriment of all concerned. Newton discovered that the binomial theorem was valid for fractional powers, but left it for Wallis to publish (which he did, with appropriate credit to Newton). Newton formulated a theory of sound, but derived a speed which did not agree with his experiments. The reason for the discrepancy was that the concept of adiabatic propagation did not yet exist, so Newton's answer was too low by a factor of , where is the ratio of heat capacities of air. Newton therefore fudged his theory until agreement was achieved (Engineering and Science, pp. 15-16).
In Optics (1704), whose publication Newton delayed until Hooke's death, Newton observed that white light could be separated by a prism into a spectrum of different colors, each characterized by a unique refractivity, and proposed the corpuscular theory of light. Newton's views on optics were born out of the original prism experiments he performed at Cambridge. In his "experimentum crucis" (crucial experiment), he found that the image proced by a prism was oval-shaped and not circular, as current theories of light would require. He observed a half-red, half-blue string through a prism, and found the ends to be disjointed. He also observed Newton's rings, which are actually a manifestation of the wave nature of light which Newton did not believe in. Newton believed that light must move faster in a medium when it is refracted towards the normal, in opposition to the result predicted by Huygens's wave theory.
Newton also formulated a system of chemistry in Query 31 at the end of Optics. In this corpuscular theory, "elements" consisted of different arrangements of atoms, and atoms consisted of small, hard, billiard ball-like particles. He explained chemical reactions in terms of the chemical affinities of the participating substances. Newton devoted a majority of his free time later in life (after 1678) to fruitless alchemical experiments.
Newton was extremely sensitive to criticism, and even ceased publishing until the death of his arch-rival Hooke. It was only through the prodding of Halley that Newton was persuaded at all to publish the Principia Mathematica. In the latter portion of his life, he devoted much of his time to alchemical researches and trying to date events in the Bible. After Newton's death, his burial place was moved. During the exhumation, it was discovered that Newton had massive amounts of mercury in his body, probably resulting from his alchemical pursuits. This would certainly explain Newton's eccentricity in late life. Newton was appointed Warden of the British Mint in 1695. Newton was knighted by Queen Anne. However, the act was "an honor bestowed not for his contributions to science, nor for his service at the Mint, but for the greater glory of party politics in the election of 1705" (Westfall 1993, p. 625).
Newton singlehandedly contributed more to the development of science than any other indivial in history. He surpassed all the gains brought about by the great scientific minds of antiquity, procing a scheme of the universe which was more consistent, elegant, and intuitive than any proposed before. Newton stated explicit principles of scientific methods which applied universally to all branches of science. This was in sharp contradistinction to the earlier methodologies of Aristotle and Aquinas, which had outlined separate methods for different disciplines.
Although his methodology was strictly logical, Newton still believed deeply in the necessity of a God. His theological views are characterized by his belief that the beauty and regularity of the natural world could only "proceed from the counsel and dominion of an intelligent and powerful Being." He felt that "the Supreme God exists necessarily, and by the same necessity he exists always and everywhere." Newton believed that God periodically intervened to keep the universe going on track. He therefore denied the importance of Leibniz's vis viva as nothing more than an interesting quantity which remained constant in elastic collisions and therefore had no physical importance or meaning.
Although earlier philosophers such as Galileo and John Philoponus had used experimental proceres, Newton was the first to explicitly define and systematize their use. His methodology proced a neat balance between theoretical and experimental inquiry and between the mathematical and mechanical approaches. Newton mathematized all of the physical sciences, recing their study to a rigorous, universal, and rational procere which marked the ushering in of the Age of Reason. Thus, the basic principles of investigation set down by Newton have persisted virtually without alteration until modern times. In the years since Newton's death, they have borne fruit far exceeding anything even Newton could have imagined. They form the foundation on which the technological civilization of today rests. The principles expounded by Newton were even applied to the social sciences, influencing the economic theories of Adam Smith and the decision to make the United States legislature bicameral. These latter applications, however, pale in contrast to Newton's scientific contributions.
It is therefore no exaggeration to identify Newton as the single most important contributor to the development of modern science. The Latin inscription on Newton's tomb, despite its bombastic language, is thus fully justified in proclaiming, "Mortals! rejoice at so great an ornament to the human race!" Alexander Pope's couplet is also apropos: "Nature and Nature's laws lay hid in night; God said, Let Newton be! and all was light."
参考资料:http://scienceworld.wolfram.com/biography/Newton.html
⑺ 艾萨克牛顿英文名怎么读
Isaac Newton
英 [ˈaizək ˈnjuːtən] 美 [ˈaɪzək ˈnuːtən]
Isaac
名字性别:男孩英文名
来源语种:古英语、希伯来语
名字寓意:笑声
名字含义:笑声,是从希伯来文名字יִצְחָק(Yitzchaq)演变而来,意思是“他会笑,他会喜乐”,从צָחַק(tzachaq)派生意思是“笑”。
Newton
来源语种:古英语
(7)牛顿大学的牛顿用英语怎么说扩展阅读
牛顿(Isacc Newton,1642—1727)是英国数学家、天文学家和物理学家。
1642年12月25日出生于英国北部林肯郡的偏僻农村,1661年牛顿中学毕业考入剑桥大学,1665年牛顿大学毕业,获得了学士学位,留校做研究工作。
在天文学方面,牛顿创制了反射望远镜。在数学方面,牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律。
在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。牛顿的研究领域非常广泛,他除了在数学、光学、力学等方面做出卓越贡献。
⑻ 牛顿英文怎么
Newton。采纳!
⑼ 牛顿全名用英文怎么说
全名 --- 爱萨克.牛顿 (Issac Newton)
⑽ 牛顿简介的英语翻译
艾萨克·牛顿简介艾萨克·牛顿[1],Isaac
newton(1643年1月4日—1727年3月20日)是英国伟大的数学家、物理学家、天文学家和自然哲学家,同时他也是一个神学爱好者,晚年曾着力研究神学。1643年1月4日生于英格兰林肯郡格兰瑟姆附近的沃尔索普村,1727年3月20日在伦敦病逝。
牛顿1661年入英国剑桥大学圣三一学院,1665年获文学士学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大多数重要科学创造的蓝图。1667年回剑桥后当选为圣三一学院院委,次年获硕士学位。1669年任卢卡斯教授直到1701年。1696年任皇家造币厂监督,并移居伦敦。1703年任英国皇家学会会长。1706年受女王安娜封爵。他晚年潜心于自然哲学与神学。
牛顿在科学上最卓越的贡献是创建了微积分和经典力学。
备注:牛顿是儒略历1642年12月25日
即格里历(阳历)1643年1月4日
所以正确的出生日期是1月4号
Isaac
Newton
introction
to
Isaac
Newton
[1],
Isaac
Newton
(four-year-old
jan.
4-1727
on
March
20th)
is
the
greatest
mathematician
and
physicist,
astronomers
and
natural
philosophers,
while
he
is
also
a
theological
studies
have
put
in
lover,
theology.
Four-year-old
on
January
4,
was
born
in
England
lincolnshire
near
grantham
of
wal-mart
thorpe
village,
on
March
20,
died
in
London.
Newton
1661,
university
of
Cambridge,
UK,
into
the
holy
trinity
college
in
1665,
bachelor
of
arts
degree.
Two
years
later
in
my
hometown
avoid
plague.
These
two
years,
he
formulated
the
life
most
important
scientific
and
create
the
blueprint.
Cambridge
in
1667
back
after
elected
at
trinity
college
courtyard,
the
committee
with
a
master's
degree.
Responsible
in
1669
by
professor
until
1701.
Lucas,
In
1696
as
the
royal
mint
supervision,
and
moved
to
London.
Tsar
British
royal
association.
By
the
queen
Anna
conferment
1706.
He
spent
his
last
years
concentrates
on
natural
philosophy
and
theology.
Newton
in
science
is
the
most
outstanding
contributions
to
create
the
calculus
and
classical
mechanics.
Note:
Newton's
Julian
calendar
in
1642,
December
25th
Gregorian
(Gregorian
calendar)
four-year-old
on
January
4,
so
the
correct
birth
date
is
January
4